Band-Gap Engineering of Nanowires Could Boost Batteries

The reason for replacing graphite in the electrodes of the ubiquitous lithium-ion (Li-ion) battery is clear to anyone who uses a smartphone: The batteries run out of charge in just a few hours under regular use.

One answer has been to replace the graphite with silicon. Unfortunately, the expanding and contracting that occurred as the lithium ions transported in and out of silicon electrodes quickly cracks it.

The next solution was to create “nanostructured silicon” electrodes, sometimes with the help of graphene or good old carbon nanotubes.

Continue reading